## A Rapid Synthesis of Pyranoid Glycals **1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1 from Glycosyl Bromides**

## Cullen L. Cavallaro and Jeffrey Schwartz\*

*Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009* 

## *Received May* **30, 1995**

Glycals, or 1,2-unsaturated sugars, are well known<sup>1</sup> synthesis intermediates<sup>2</sup> of particular significance for the preparation of oligosaccharides,<sup>3</sup> carbohydrates,<sup>4</sup> and  $O$ -<sup>5</sup> or C-glycosides.6 Consequently, development of new routes to glycals can have immediate impact on a broad range of synthesis endeavors, especially if these methodologies involve mild conditions which are tolerant of sensitive functionality. The classic synthesis of glycals $1,7$ involves treating a peracetylated glycosyl bromide with zinc and acetic acid. To obviate the requirement for acid, myriad methodologies have been explored, including reduction of protected glycosyl halides by alkali metals.<sup>8</sup>  $Cr(II),^9$  Zn,<sup>10</sup> Zn/Ag,<sup>11</sup> Al/Hg,<sup>12</sup> or SmI<sub>2</sub>;<sup>13</sup> fragmentation of a 2-O-mesylglycosyl chloride;<sup>14</sup> or using thiophenyl glycoside15 precursors. Although effective, these procedures can suffer shortcomings, including low protecting

**(2)** (a) McVinish, L. M.; Rizzacasa, M. A. *Tetrahedron Lett.* **1994, 35,923.** (b) Ireland, R. E.; Armstrong, J. D. 111; Lebreton, J.; Meissner, R. S.; Rizzacasa, M. A. *J. Am. Chem.* **SOC. 1993,115, 7152.** (c) Ireland, R. E.; Meissner, R. S.; Rizzacasa, M. **A.** *J. Am. Chem.* SOC. **1993,115, 7166.** 

**(3)** (a) Danishefsky, S. J.; McClure, K. F.; Randolph, J. T.; Ruggeri, R. B. *Science* **1993, 260, 1307.** (b) Danishefsky, S. J.; Gervay, J.; Peterson, J. M.; McDonald, F. E.; Koseki, K; Oriyama, T.; Griffith, D. **A.;** Wong, C.-H.; Dumas, D. P. *J. Am. Chem.* SOC. **1992, 114, 8329. (c)**  Danishefsky, **S.** J.; Koseh, K.; Griffth, D. A.; Gervay, J.; Peterson, J.

M.; McDonald, F. E.; Oriyama, T. *J. Am. Chem. Soc.* **1992**, *114*, 8331. **(4)** (a) Santoyo-González, F.; García-Calvo-Flores, F.; Isac-García, J.; Hernández-Mateo, F.; García-Mendoza, P.; Robles-Díaz, R. *Tetrahedron* **1994,50,2877.** (b) Booma, C.; Balasubramanian, K. K. *J. Chem.*  SOC., *Perkin Trans. 1* **1993, 393.** (c) Inaba, K.; Matsumura, S.; Yosikawa, S. *Chem. Lett.* **1991, 485.** (d) Horton, D.; Priebe, W.; Sznaidman, M. *Carbohydr. Res.* **1990,205, 71.** 

**(5)** (a) Liu, K. K.-C.; Danishefsky, S. J. *J. Org. Chem.* **1994,59,1892.**  (b) Liu, K. K.-C.; Danishefsky, S. J. *J. Org. Chem.* **1994, 59, 1895.** (c) For a recent review see: Toshima, K.; Tatsuta, K. *Chem. Rev.* **1993,** 

**93, 1503. (6)** (a) Parker, K. A,; Koh, Y.-H. *J. Am. Chem. SOC.* **1994,116,11149.**  (b) Parker, **K.** A. *Pure Appl. Chem.* **1994,** *66,* **2135.** (c) Zhang, H.-C.; Daves, G. D. *J. Org. Chem.* **1993, 58, 2557.** (d) Benhaddou, R.; Czernecki, S.; Ville, G. *J. Org. Chem.* **1992,57,4612.** For recent reviews see: (e) Suzuki, K.; Matsumoto, T. In *Recent Progress in the Chemical Synthesis* of *Antibiotics and Related Microbial Products;* Lukacs, G., Ed.; Springer Verlag: Berlin, **1993;** Vol. **2,** pp **353-403.** *(0* Jaramillo, C.; Knapp, S. *Synthesis* 1994, 1. (g) Herscovici, J.; Antonakis, K. In<br>*Studies in Natural Products Chemistry, Vol. 10*; Atta-Ur-Rahman, Ed.;<br>Elsevier Science Publishers: New York, 1992; pp 337–403. (h) Daves, G. D. In *Carbohydrates-Synthetic Methods and Applications in Medicinal Chemistry;* Ogura, H., Hasegawa, A,, Suami, T., Eds.; VCH

Publishers: New York, **1992;** pp **49-65. (7)** For example, see: Roth, W.; Pigman, W. *Methods Carbohydr. Chem.* **1963,2,405.** 

**(9)** Pollon, J. **H.** P.; Llewellyn, G.; Williams, J. M. *Synthesis* **1989, 758.** 

**(10)** Somslk, **L.;** NBmeth, I. *J. Carbohydr. Chem.* **1993,** *12,* **679.**  (11) Csuk, R.; Fiirstner, A,; Glanzer, B. I.; Weidmann, H. *J. Chem.* 





group compatibility;<sup>8a-d</sup> toxic,<sup>9,12</sup> expensive,<sup>13</sup> or dangerous<sup>8d,11</sup> reagents; low yield;<sup>8b,c,15</sup> or starting materials that involve multistep synthesis from available precursors.14 We now report a new and efficient procedure for the production of glycals from the corresponding glycosyl bromides, which can be accomplished simply, rapidly and in high yield using an inexpensive and easy to prepare Ti(II1) reagent.

The dimeric Ti(III) species  $(Cp_2TiCl)_2(1)^{16}$  **1** reacts with activated haloalkyls<sup>17</sup> by halogen atom abstraction or with epoxides<sup>18</sup> by "alkoxide" abstraction to give, in both cases, alkyl radicals. Given the stability of glycosyl radicals,<sup>19</sup> it was of interest to learn if 1 could abstract bromine from glycosyl bromides, which are easily, but slowly, obtained by treating the peracetylated sugar with TMS-Br.20 Indeed, we found **1** completely consumed the glycosyl bromide at room temperature in less than 15 min; elimination of the 2-0-acetyl group also occurred, to give the glycal in high yield (Scheme 1). Representative examples of glycal synthesis are listed in Table 1.

By analogy with the oxidative addition of alkyl halides to low-valent early transition metal complexes, $21$  we suggest that **1** reacts with a glycosyl bromide by abstraction of Br' by Ti(II1) to give an intermediate glycosyl radical.<sup>19</sup> This radical is then trapped<sup>21</sup> by a second equivalent of  $Ti(III)$  to give glycosyltitanium $(\dot{IV})$  complex **2**, which then eliminates  $Cp_2TiCl(OAc)^{22}$  to yield the glycal (Scheme 2). We find that using an excess of Ti(II1) over the stoichiometric amount gives the highest yields of glycals. If only a stoichiometric amount of Ti(II1) is used, the initially formed glycosyl radical reacts with solvent competitively with its capture by Ti(III), giving the anhydroalditol<sup>23</sup> as a byproduct.

In support of an organotitanium $(IV)$  complex intermediate mechanism, we note that reaction of 3,4-di-O-acetyl- $2-deoxy-\beta-D-ribopy ranosyl bromide with 1 gives 3, which$ has been isolated and identified by 'H NMR, and which

**(17)** Yanlong, **Q.;** Guisheng, L.; Huang, Y.-Z. *J. Organomet. Chem.*  **1990, 381, 29.** 

**(18)** RanjanBabu, T. V.; Nugent, W. **A.** *J. Am. Chem.* **SOC. 1994,**  *11* **6, 986.** 

**(19)** (a) Dupuis, J.; Giese, B.; Riiegge, D.; Fischer, H.; Korth, H.-G.; Sustmann, R. *Angew. Chem., Int. Ed. Engl.* 1984, 23, 896. (b) Korth, H.-G.; Sustmann, R.; Dupuis, J.; Giese, B. J. Chem. Soc., Perkin Trans. 2 1986, 1453. (c) Korth, H.-G.; Sustmann, R.; Gröninger, K. S.; Witzel, T.; Gies

(21) Cr(II): Kochi, J. K.; Powers, J. W. *J. Am. Chem. Soc.* **1970**, **92**, 137. *Zr*(II): Williams, G. M.; Gell, K. I.; Schwartz, J. *J. Am. Chem. SOC.* **1980, 102, 3660.** Ti(I1): Kasatkin, **A,;** Nakagawa, T.; Okamoto, S.; Sato, F. *J. Am. Chem.* SOC. **1995, 117, 3881.** 

(22) For an example of metal-induced dealkoxyhalogenation see:<br>Fürstner, A.; Weidmann, H. J. Org. Chem. 1989, 54, 2307. For a related  $\omega$ -halide elimination see: Tam, W.; Rettig, M. F. J. Organomet. Chem. **1976, 108,** C1.

**(23)** Bennek, J. **A.;** Gray, G. R. *J. Org. Chem.* **1987, 52, 892.** 

<sup>(1)</sup> Fischer, E.; Zach, K. *Sitzber. Ygl. Preuss. Akad. Wiss.* **1913,16, 311.** 

<sup>(8) (</sup>a) Ireland, R. E.; Wilcox, C. S.; Thaisrivongs, S. J. Org. Chem.<br>1978, 43, 786. (b) Eitelman, S. J.; Jordaan, A. J. Chem. Soc., Chem.<br>Commun. 1977, 552. (c) Eitelman, S. J.; Hall, R. H.; Jordaan, A. J.<br>Chem. Soc., Che H. *J. Carbohydr. Chem.* **1988, 7, 773.** 

Soc., *Chem. Commun.* **1986, 1149.** 

**<sup>(12)</sup>** Jain, S.; Suryawanshi, S. N.; Bhakuni, D. S. *Znd. J. Chem.* **1987,**   $26B. 866.$ 

**<sup>(13)</sup>** DePouilly, P.; Vauzeilles, B.; Mallet, J. M.; Sinay, P. *C.R. Acad.*  **(14)** Holzapfel, C. W.; Koekemoer, J. M.; Verdoorn, G. H. S. *Afr. J. Sci., Ser. ZZ.* **1991, 313, 1391.** 

*Chem.* **1986,39, 151.** 

**<sup>(15)</sup>** (a) Lancelin, J.-M.; Morin-Allory, L.; Sinay, P. *J. Chem.* SOC., *Chem. Commun.* **1984, 355.** (b) Fernandez-Mayoralas, **A,;** Marra, **A,;**  Trumtel, M.; Veyrieres, **A.;** Sinay, P. *Carbohydr. Res.* **1989, 188, 81.**  (c) Fernandez-Mayoralas, A.; Marra, A.; Trumtel, M.; Veyrières, A.; Sinay, P. *Tetrahedron Lett.* **1989**, 30, 2537.<br>
(16) Coutts, R. S. P.; Wailes, P. C.; Martin, R. L. *J. Organomet*.

*Chem.* **1973,47, 375.** 

**<sup>(20)</sup>** Gillard, J. W.; Israel, M. *Tetrahedron Lett.* **1981,22, 513.** 



**Table 1. Reduction of Glycosyl Bromides to Glycals**  with  $\rm (Cp_2TiCl)_2$ 



undergoes cleavage with  $D_2O^{24}$  to give anhydroalditol 4  $(80\%$  d<sub>1</sub>). Two diastereomeric components are observed (3:1), which are likely  $\alpha$ - and  $\beta$ -anomers, for which assignments were made by analysis of the COSY spectrum. Cp shifts **(6.20** and **6.24** ppm) are typical for CpzTi-  $(a1ky)CI$  compounds<sup>25</sup> and the difference between chemical shifts of the diastereotopic Cp units **(0.04** ppm) is similar to that of simple Zr analogs, such as  $Cp_2(Cl)Zr_a$ - $OCHRZr<sub>b</sub>(Cl)Cp<sub>2</sub><sup>26</sup>$  The chemical shift recorded for H1 is as expected, based on the observed shift of *6* 3.36 for the corresponding proton in  $\text{Cp}_2(\text{Cl})\text{Zr}_3\text{OCHRZr}_b(\text{Cl})\text{Cp}_2$ and the typical downfield shift *(ca.* 1.1 ppm) for Ti *us* Zr species. $26,27$  On the basis of the small couplings noted for **H4,** this proton is assigned to be equatorial; based on the large couplings for **H1,** this proton is assigned to be axial (Scheme **3).** Thus, the major component is assigned to be the  $\alpha$ -Ti anomer and the minor the  $\beta$ -anomer. These results are consistent with those reported for a-facial attack on both glucosyl and mannosyl radicals by  $Bu_3SnD.^{19,28}$  In the context of glycal synthesis, since both mannosyl and glucosyl bromides give high yields of

Scheme 3



glucal, both *syn* and *anti* elimination of Cp<sub>2</sub>TiCl(OAc) seem possible. We are further examining the mechanism and scope of this process.

## **Experimental Section**

**General.** Reaction solvents were dried and distilled prior to use using standard methods. 1,2,3,4,6-Penta-O-acetyl-a-D-mannopyranose, 1,2,3,4-tetra-O-acetyl-β-D-xylopyranose, and 2,3,4,6tetra-O-acetyl-β-D-galactopyranosyl bromide were purchased from Sigma Chemical Co. All other starting materials were purchased from Aldrich Chemical Co. and were used without further purifacation.

**Synthesis of Peracetylated Glycosyl Bromides.20** In a typical procedure, under an inert atmosphere **1,2,3,4,6-penta-**0-acetyl-a-D-mannopyanose **(200** mg, **0.51** mmol) was dissolved in 2 mL of clean, dry  $CH_2Cl_2$  and cooled to  $-40$  °C. Bromotrimethylsilane (TMS-Br; **240** mg, **1.53** mmol) was added, and the mixture was stirred as it warmed to room temperature. Bromide synthesis was monitored by NMR. When the reaction was complete, the solvent, excess TMS-Br, and TMS-OAc were removed under vacuum to provide the **2,3,4,6-tetra-0-acetyl-a-**D-mannopyranosyl bromide (93% by NMR<sup>30</sup>). Other glycosyl bromides were prepared similarly.

Bis(titanocene chloride).<sup>16</sup> A solution of Cp<sub>2</sub>TiCl<sub>2</sub> (4.0 g, **1.61** mmol) in **25** mL **of** THF was prepared under inert atmosphere. Aluminum foil **(2.0** g, **74.1** mmol, Aldrich Gold Label) was added to this red solution, and the reaction mixture was stirred overnight. The resulting green solution was filtered, concentrated in vacuo, washed with three **20** mL portions of diethyl ether, filtered, and dried in vacuo to give **3.4** g of (CpzTiC1)z as a light green powder **(100%** yield).

**Synthesis of Peracetylated Glycals.** In a typical procedure, a solution of (CpzTiC1)z **(300** mg, **0.702** mmol) in **10** mL **of**  THF was prepared in a dry box.  $2,3,4,6$ -Tetra-O-acetyl- $\alpha$ -Dmannopyranosyl bromide **(180** mg, **0.438** mmol) in **10** mL of THF was added to this stirred, green solution dropwise over the course of **5** min at room temperature. The reaction mixture quickly began to turn brown, and within **10** min was red. The mixture was removed from the dry box and concentrated in vacuo. The residue was dissolved in ether, and the solution was passed through a short column of silica to remove organometallic impurities. Solvent was removed in vacuo to yield **3,4,6-tri-O**acetyl-1,5-anhydro-2-deoxy-D-arabino-hex-1-enitol (tri-O-acetyl-D-glUCal) **(113** mg; **95%)** as an oil.

 $\text{Tri-O-acetyl-2-deoxy-}\beta\text{-}b\text{-}erythro\text{-}pentopy ranose.<sup>31</sup>$ *2-Deoxy-P-~-erythro-pentose* (2-deoxyribose; **0.504** g, **3.76** mmol) was dissolved in a solution composed of **7** mL of acetic anhydride **(74.19** mmol, **20** equiv) and **12** mL of pyridine **(148.37** mmol, **39.5** mmol). After stirring overnight, the yellow solution was worked up according to the reference, and the product was crystallized from diethyl ether and hexanes. Two crops gave **267** mg of the desired product **(27%** yield) as clear hexagonal prisms. NMR (CDC13): 6 **6.24 (lH,** dd, **Hl); 5.32-5.24 (lH,** m, **H3); 5.19 (lH,** broad **s, H4); 3.99 (lH,** dd, **H5); 3.83 (lH,** dd, **H5');** 

- (31) Durette, P. L.; Horton, D. *Carbohydr. Res. 1971,18, 57.*
- (32) Horton, D.; Lauterback, J. H. *J. Org. Chem.* **1969,** *34,* 86.

 $\left( 24\right)$  D<sub>2</sub>O was 90% -OD, based on toluene formed by reaction with benzylmagnesium bromide.

<sup>(25)</sup> Beachell, H. C.; Butter, S. **A.** *Inorg. Chem. 1966, 4,* 1133. (26) Gell, K. I.; Williams, G. M.; Schwartz, J. *J. Chem. SOC., Chem.* 

*Commun. 1980,* 550.

<sup>(27)</sup> **For** Ti, see ref 25; for Zr, see: Wailes, P. C.; Weigold, H.; Bell, (28) Giese, B.; Dupuis J. *Tetrahedron Lett. 1984, 25, 1349.*  **A. P.** *J. Organomet. Chem. 1972,34,* **155.** 

<sup>(29)</sup> By comparison with an authentic sample (Aldrich).

<sup>(3</sup>O)Higashi, K.; Nakayama, K.; Shioya, E.; Kusama, T. *Chem. Pharm. Bull. 1991,39,* 2502.

2.29-2.17 (lH, m, H2); 2.12 (3H, **s,** OAc); 2.09 (3H, s, OAc); 2.01 (3H, s, OAc); 1.95-1.85 (lH, m, H2').

3,4-Di-O-acetyl-2-deoxy- $\beta$ -D-erythro-pentopyranosyl Bro**mide.** The title compound was synthesized as described above using 250 mg (0.96 mmol) of 1,3,5-tri-O-acetyl-2-deoxy-β-D $evv$ thro-pentopyranose and 460 mg  $(3.03 \text{ mmol})$  of TMS-Br. The reaction took approximately 1 h, and the yield was estimated to be 99% by NMR  $(CD_2Cl_2)$ :  $\delta$  6.74 (1H, d, H1); 5.42 (1H, m, H3); 5.26 (lH, appears as broad s, H4); 4.19 (lH, d, H5); 3.93 (lH, dd, H5'); 2.57 (lH, td, H2); 2.30 (lH, dd, H2'); 2.03 (3H, s, OAc); 2.01 (3H, s, OAc).

Bis(cyclopentadienyl)(3,4-di-*O*-acetyl-2-deoxy-β-D-erythro**pentopyranosyl)titanium(M Chloride (3). A** solution of  $(Cp_2TiCl)_2$  (750 mg, 1.75 mmol) in 5 mL of benzene was prepared under inert atmosphere. The green solution was stirred, and 3,4-di-O-acetyl-2-deoxy- $\beta$ -D-erythro-pentopyranosyl bromide (250 mg, 0.89 mmol) in 10 mL of benzene was slowly added dropwise, over the course of *ca.* 2 h. During this time the solution slowly changed from green to brown to red. Solvent was removed in

vacuo, and the solid residue was extracted with diethyl ether. Orange-red crystals were obtained by low-temperature crystallization from ether/hexane and were a 3:1 mixture of  $\alpha$ - and  $\beta$ -anomers of (3,4-di-*O*-acetyl-2-deoxy-D-erythro-pentopyranosyl)- $Ticp_2Cl$  contaminated with some  $Cp_2TiBrCl$ . NMR  $\overline{(CDCl_3)}$  for the  $\alpha$ -anomer:  $\delta$  6.24 (5H, s, Cp); 6.20 (5H, s, Cp'); 4.93 (1H, broad **s**, H4); 4.60-4.55 (1H, m, H1); 4.01 (1H, d,  $J_{\text{H2-H3}} = 11.5$ 2.30 (lH, m, H2); 2.08 (3H, s, OAc); 1.89 (3H, **s,** OAc); 1.66 (lH, m, H2'). Hz, H3); 3.78 (1H, d,  $J_{H5-H5'} = 12.2$  Hz, H5); 3.12 (1H, d, H5');

**Acknowledgment.** The authors acknowledge support for this work provided by the National Science Foundation. They also thank Dr. Yumin Liu and Mr. Michael C. Barden for helpful suggestions and Ms. Varsha Gupta for assistance on the assignments for **3.** 

509509770